终于,清华大学唐杰团队也出手了。
就在 GPT4 发布的同一天,唐教授在微博宣布:
基于千亿参数大模型的对话机器人 ChatGLM,现在开启邀请制内测。
据介绍,ChatGLM 专门针对中文进行了优化,可以说是国人友好~
看起来,写博客提纲、创作剧本、解数学题、写代码,甚至是扮演高冷御姐,它都拿捏的死死的:
△ 写介绍 ChatGLM 的博客提纲
△ Cosplay 聊天扮演高冷御姐
量子位有幸拿到了内测名额,将在后文进行一波实测。
与此同时,还有另一个消息宣布:
唐杰团队为了与社区一起更好地推动大模型技术的发展,同时开源了包含 62 亿参数的双语 ChatGLM-6B 模型。
它最大的特点是在普通电脑上就能进行部署,有一块 2080Ti 就行。
一起来看看。
能写文言文致辞,知道何恺明最新动态,但……
先看 ChatGLM,它是唐杰团队大模型家族时隔半年诞生的一位新成员。
alpha 内测版名称叫 QAGLM(全称 qa-glm-v0.7)。
浅试一下效果。
首先,我们让它说了一下它和 ChatGPT 的区别。
它点出了自己的研发机构,和擅长中文的特点。
那么,就让它用文言文写个致谢词叭。
咋说,虽然多了一个 ” 余 “、出现了一个莫名其妙的繁体字,但读着还可以,用的排比句增强了气势。
接着,我们把前几日硅谷暴雷的文章开头丢给它,让它起个标题。
感觉还不错,起码抓住了几个关键信息。
不幸的是,论文挑战没有通过,我们把 GLM-130B 的链接扔给它,让它简要概括一下主题时,它说的根本不是这篇。
跟 ChatGPT 胡邹参考文献的操作简直有得一拼(手动狗头)。
接下来,考考它的数学能力吧。
这道小学应用题没问题:
不过鸡兔同笼,就难倒它了,最后居然还算出了负数 ==
编程方面,也可以解决简单的算法题。
归纳信息能力呢?我们给了一段英文需求,不难:
结果正确:
需要注意的是,目前 ChatGLM 每轮对话最多只可以进行 5 个来回,每次最多输入 1000 字。
它对新信息的掌握度不错,知道推特现在的 CEO 是马斯克,也知道何恺明 3 月 10 日回归学界的事情,但还没发现 GPT-4 已经发布了。
以及,目前响应速度还是非常快的,无论什么问题,回答得对不对,基本几秒内就能给出答案。
最后,量子位也让它来了个 cosplay,看看哄女朋友的本事如何:
emmm,虽然有点板正,但听完这段话 ” 我 ” 的气确实消了。
那么,以上就是我们的测试结果,各位觉得如何?
基于 1300 亿参数的基座模型打造
据官方介绍,ChatGLM 参考了 ChatGPT 的设计思路,在千亿基座模型 GLM-130B 中注入了代码预训练,通过有监督微调等技术来实现人类意图对齐(就是让机器的回答符合人类价值观、人类期望)。
这个 GLM-130B 的来头值得说道一番。
它是由清华大学知识工程实验室 ( KEG ) 与智谱 AI 共同研发的一个大规模中英文预训练语言模型,参数 1300 亿,去年 8 月正式对外发布。
不同于 BERT、GPT-3 以及 T5 的架构,GLM-130B 是一个包含多目标函数的自回归预训练模型。
它的优势包括:
在 Stanford 报告的 30 个世界主流大模型评测中,GLM-130B 也成为了亚洲唯一入选的模型。
且获得了不错的成绩:
比如在准确性和恶意性指标上与 GPT-3 175B ( davinci ) 接近或持平,鲁棒性和校准误差在所有千亿规模的基座大模型(作为公平对比,只对比无指令提示微调模型)中也可圈可点。
而就在 CCF 最近的一场会议上,有现场观众提问:ChatGPT 为什么没有诞生在中国?是我们没有关注这件事吗?
嘉宾就把 GLM-130B 搬了出来(它也入选了 ICLR ’ 23)。
现在,GLM-130B 也终于被派上了 ” 大用场 “。
关于内测,唐杰团队表示,后续会逐步扩大范围,有兴趣的朋友可以再等一等。
60 亿参数的缩小版同时开源
除了这个聊天机器人 ChatGLM,唐杰团队这次也把 GLM-130B 的 ” 缩小版 “ChatGLM-6B 开源了出来。
△ GitHub 已经揽获近 2k 标星
ChatGLM-6B 使用与 ChatGLM 相同的技术,初具中文问答和对话功能。
特点如下:
当然,缺点就是容量只有 60 亿,其模型记忆和语言能力较弱,不擅长逻辑类问题(如数学、编程),以及多轮对话可能会出现上下文丢失和理解错误的情况。
但它主打的就是一个低门槛,在单张 2080Ti 上就能进行推理使用,硬件需求不高。
因此,只要有兴趣都可以下载下来试试,进行研究和(非商用的)应用开发都可以。